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ABSTRACT
Visual Question Answering (VQA) is a vital yet challenging task
in the field of multimedia comprehension. In order to correctly
answer questions about an image, a VQA model requires to suffi-
ciently understand the visual scene, especially the vision-semantic
reasonings between the two modalities. Traditional relation-based
methods allow to encode the pairwise relations of objects to boost
the VQA model performance. However, this simple strategy is defi-
cient to exploit the abundant concepts expressed by the composition
of diverse image objects, leading to sub-optimal performance. In
this paper, we propose a focal and composed vision-semantic mod-
eling method, which is a trainable end-to-end model, for better
vision-semantic redundancy removal and compositionality model-
ing. Concretely, we first introduce the LENA cell, a plug-and-play
reasoning module, which removes redundant semantic by a fo-
cal mechanism in the first step, followed by the vision-semantic
compositionality modeling for better visual reasoning. We then
incorporate the cell into a full LENA network, which progressively
refines multimodal composed representations, and can be leveraged
to infer the high-order vision-semantic in a multi-step learning way.
Extensive experiments on two benchmark datasets, i.e., VQA v2
and VQA-CP v2, verify the superiority of our model as compared
with several state-of-the-art baselines.
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Figure 1: Illustration of the vision-semantic compositional-
ity. The key concept “person” can be combined with multi-
ple objects based on the vision-semantic compositionality,
which is beneficial to infer the correct answer - kitchen.

1 INTRODUCTION
Visual Question Answering (VQA) has long been recognized as
a fundamental task of multi-modal comprehension. It targets at
correctly answering a natural language question about a given
image, which has profound effect on various applications includ-
ing visually impaired assistance and human-machine interaction.
With the increasing prosperity of both computer vision and natural
language processing communities, numerous well-designed multi-
modal methods [2, 3, 17, 18, 49] have been proposed to facilitate
this task.

To obtain expressive image features, most existing models [2, 13,
27, 28, 53, 55] utilize the top-down soft attention mechanism, which
assigns different attention weights to image regions according to
their relevance with the given question. Nevertheless, these meth-
ods only focus on refining the superficial visual features, ignoring
the sophisticated interactions between image objects. To tackle this,
some relation-based models [7, 24, 31, 32, 47] have been presented
recently, which leverage the intra-modality interactions to improve
the question answering performance. Typically, they encode the
object-pair relations by considering the semantic and/or spatial
interactions between image objects, thereby enhance the visual
feature learning.

Despite improved results on benchmark datasets have being
observed, existing VQA methods show certain limitations in the fol-
lowing aspects: 1) vision-semantic redundancy. The soft atten-
tion mechanism is generally adopted to compute the inter-modality
relevance between image objects and questions, where objects rele-
vant to questions obtain more attention, otherwise less. However,
some negligible objects, such as “clock” and “sign” in Figure 1, are
actually inefficacious for question answering, would produce distur-
bance to some extent and lead to vision-semantic misunderstanding.
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2) lack of vision-semantic compositionality. Existing relation-
based methods generally leverage object-pair relations to perform 
visual reasoning. However, simply encoding the pairwise relations 
of objects cannot sufficiently exploit the complex evidence com-
posed by diverse objects. As the example illustrated in Figure 1, 
these models cannot accurately capture the vision-semantic com-
positionality expressed by “people”, “cooker”, and “hearth”, which 
inevitably limits the model to efficaciously reason the correct an-
swer “kitchen”.

To settle the aforementioned issues, in this paper, we propose a 
novel focaL and composEd visioN-semAantic modeling network, 
dubbed as LENA, for better vision-semantic redundancy removal 
and compositionality modeling in VQA. Specifically, we first apply 
the bottom-up attention [2] to identify the salient objects, followed 
by our LENA cell equipped with two novel units. Concretely, a Focal 
Attention Unit (FAU) is leveraged to selectively remove redundant 
objects for subsequent object composing process, while a Composed 
Semantic-Aware Unit (CAU) is thereafter introduced to aggregate 
diverse objects into multiple composed embeddings, whereby we 
adaptively select the most relevant compound via the attention 
learning. Afterwards, we design an iterative reasoning process to 
progressively refine the high-order composed representations.

To verify the effectiveness of the proposed method, we conducted 
extensive experiments on two popular datasets, i.e., VQA v2 [12] 
and VQA-CP v2 [37]. Experimental results demonstrate that our 
proposed method can yield better performance as compared to a 
series of baseline models.

In summary, the contributions of this work are three-fold:
• We propose a focal and composed vision-semantic modeling
network, i.e., LENA network, which iterates through the
LENA cell to progressively refine high-order vision-semantic
representations and reason over the visual scene with respect
to the question.

• We introduce the LENA cell, where we elaborately devise
two novel units. The former unit effectively removes the
redundant semantic, followed by the latter one to exploit the
high-order vision-semantic compositionality.

• We conducted extensive comparative experiments on two
publicly available datasets to validate the effectiveness of
vision-semantic redundancy removal and compositionality
modeling. As a side contribution, we have released our code
to benefit other researchers1.

2 RELATEDWORK
2.1 Visual Attention in VQA
The visual attention mechanism plays an indispensable part in cur-
rent VQA methods, which is leveraged to learn the fine-grained
visual features. Initially, the visual attention is introduced into VQA
to assign distinctive weights to image regions according to the rele-
vance with given questions [41]. To pinpoint the regions that are
most indicative to the question, the multi-glimpse attention [49]
is proposed to iteratively infer the answer by fusing the visual
features with updated question features. Different from the above
top-down visual attention methods, Anderson et al. [2] introduced

1https://github.com/Einstones/LeNa-Net

a united bottom-up and top-down attention (UpDn) mechanism
which firstly detects salient image objects and then leverages vi-
sual attention to attend on the crucial objects. This technique has
been widely adopted and applied in recent studies [10, 34, 47],
boosting the performance of a series of VQA models. For instance,
BAN [20] adopts the bilinear attention between the detected image
objects and question words to strengthen the fine-grained visual
representations. Moreover, DFAF [10] introduces the self-attention
mechanism into VQA, where the intra-modality interactions are
effectively modeled.

2.2 Visual Relation Modeling in VQA
Recently, exploring the visual relations between objects has consti-
tuted a key research direction in VQA, and a series of well-devised
relation-based models have been proposed [10, 24, 33, 34]. For in-
stance, in [34], a graph learner is introduced to reason the relation
representation through the pairwise attention modeling and spatial
graph convolution. Analogously, DCN [33] and DFAF [10] lever-
age the self-attention mechanism to encode the pairwise relation,
thereby enhance the visual feature learning. To further model multi-
type inter-object interactions, ReGAT [24] considers both explicit
and implicit relations to enrich visual representation. ODA was
proposed in [39], which encodes the object-pair relations by imple-
menting difference operator between regions. Moreover, MuRel [47]
firstly merges spatial and semantic representations with the BLOCK
fusion approach [6], and then employs the max operator for neigh-
bours aggregation.

3 OUR PROPOSED METHOD
As shown in Figure 2, our proposed LENA model comprises of
three components: Visual and Textual Encoder (Section 3.1), LENA
Network (Section 3.2), and Answer Reasoning (Section 3.3). In the
following, we elaborate these three components sequentially.

3.1 Visual and Textual Encoder
3.1.1 Visual Encoder. Following [7, 24], we extract image features
using a pre-trained Faster-RCNN method [38]. Concretely, we first
select 𝑛 bounding boxes with the highest class confidence scores
for each image, where the obtained visual region feature and corre-
sponding semantic indicator are respectively denoted as f𝑖 ∈ R𝑑𝑣
and h𝑖 ∈ R𝑑𝑐 . Meanwhile, the position information of each image
objects can be represented by p𝑖 = (𝑥𝑖 , 𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ), where 𝑥𝑖 and 𝑦𝑖
are top left coordinates, as well𝑤𝑖 and ℎ𝑖 denote width and height,
respectively. To fully explore linguistic cues, we then introduce
a semantic embedding matrix Wℎ ∈ R𝑑𝑒×𝑑𝑐 , where each column
represents the embedding of a semantic concept. Afterwards, based
on the semantic indicator h𝑖 andWℎ , we could derive the semantic
embedding e𝑖 for the i-th visual region as follows,

e𝑖 = Wℎh𝑖 . (1)

Thereafter, we feed the concatenation of the semantic embedding
e𝑖 ∈ R𝑒 and the visual embedding f𝑖 into a fully-connected layer,
obtaining the final representation v𝑖 ∈ R𝑑 of the 𝑖-th visual region,

v𝑖 = W𝑣 [f𝑖 ; e𝑖 ] + b𝑣, (2)

where W𝑣 ∈ R𝑑×(𝑑𝑣+𝑑𝑒 ) and b𝑣 ∈ R𝑑 are learnable parameters.

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4529



Focal 
Attention Unit

Faster-RCNN

What does the 
black machine 
next to the man 

produce?

Composd Semantic-
Aware Unit

GRU Encoder

Visual and Textual Encoder

0.61

0.24
0.07

LENA Cell

Soft
Attention 

Average 
Pooling 

Answer  ReasoningLENA  Network

kitchen 

LENA Cell LENA Cell LENA Cell LENA Cell

Figure 2: Schematic illustration of our proposed LENA model.
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Figure 3: Focal Attention Unit.

3.1.2 Texual Encoder. For the question encoder, we adopt GRU [9]
followed by the self-attention mechanism [45] to generate the
context-aware embedding for eachword, denoted as {q𝑘 }𝑚𝑘=1, where
𝑚 represents the length of the question and q𝑘 ∈ R𝑑𝑞 (𝑑𝑞 = 𝑑) is
the representation of the 𝑘-th word.

3.2 LENA Network
We propose the LENA Network, a vision-semantic modeling archi-
tecture that iterates through a series of LENA cells. Each cell takes
as input the semantic features {V𝑡 (𝑖)}𝑛𝑖=1 and the word embeddings
{q𝑘 }𝑚𝑘=1, where V𝑡 (𝑖) ∈ R𝑑 denotes initial representation of the
i-th visual region in the t-th LENA cell, which is initialized as v𝑖 , i.e.,
V0 (𝑖) = v𝑖 . The output of the t-th cell is represented as {V𝑡 (𝑖)

′′}𝑛
𝑖=1.

3.2.1 LENA Cell. As shown in Figure 2, there are two key parts in
the LENA cell: Focal Attention Unit and Composed Semantic-Aware
Unit.

Focal Attention Unit. This unit aims to reduce the vision-
semantic redundancy via the focal mechanism, including three
steps: attention estimation, redundancy identification, and redun-
dancy removal. The details are showed in Figure 3. Specifically, we
first calculate the region-by-word attention scores,

𝑤𝑖𝑘𝑡 = (W𝑣V𝑡 (𝑖))T (W𝑞q𝑘 ), (3)

whereW𝑞 ∈ R𝑑×𝑑 andW𝑣 ∈ R𝑑×𝑑 are projection matrixes. After-
wards, we apply a softmax function over𝑤𝑖𝑘𝑡 by column and then
sum the normalized scores �̄�𝑖𝑘𝑡 by row, obtaining r𝑔𝑡 =

[
𝑔1
𝑡 , ..., 𝑔

𝑛
𝑡

]
∈

R1×𝑛 , where 𝑔𝑖𝑡 =
∑𝑚
𝑘=1 �̄�

𝑖𝑘
𝑡 represents the obtained attention of

V𝑡 (𝑖) from the given question. To maintain a relatively long-term
memory for attention estimation, we adopt a decay mechanism
by considering its previous attention score r𝑢

𝑡−1 and the current

one, i.e., r𝑢𝑡 = 𝛾 · r𝑢
𝑡−1 + r𝑔𝑡 , where 𝛾 is a decay parameter and

r𝑢𝑡 =
[
𝑢1
𝑡 , ..., 𝑢

𝑛
𝑡

]
∈ R1×𝑛 , which is initialized as r𝑢0 = 0.

In the second step, to better identify the redundant semantic, we
score each region based on its allocated attention from question
and its relative attention to other regions,

𝐹 (𝑢𝑖𝑡 ) =
1
𝑛

𝑛∑
𝑙=1,𝑙≠𝑖

(𝑢𝑖𝑡 − 𝑢𝑙𝑡 ) ·
√
𝑢𝑙𝑡 , (4)

where
√
𝑢𝑖𝑡 represents the normalized attention and (𝑢𝑖𝑡 −𝑢𝑙𝑡 ) repre-

sents the mathematical difference, which determines the relative at-
tention of the l-th region to the i-th region. The regions with scores
smaller than zero are deemed as redundant regions, otherwise im-
portant, and a truncation function is adopted as r𝑚𝑡 = I(𝐹 (r𝑢𝑡 ) > 0)
to distinguish them, where 𝐹 (r𝑢𝑡 ) =

[
𝐹 (𝑢1

𝑡 ), . . . , 𝐹 (𝑢𝑛𝑡
)
] ∈ R1×𝑛 ,

r𝑚𝑡 ∈ R1×𝑛 , and I(𝑥) returns 1 if 𝑥 is true, otherwise 0.
Then we regularize the attention by generated importance score

r̃𝑢𝑡 = r𝑢𝑡 ⊙ r𝑚𝑡 , (5)
where ⊙ denotes the element-wise multiplication, and 1 ∈ R𝑛
denotes the vector with all elements set to 1.

Finally, we remove the vision-semantic redundancy via r̃𝑢𝑡 ∈
R1×𝑛 , which can be formulated as follows,

Ṽ𝑡 (𝑖) = �̃�𝑖𝑡 · (
𝑚∑
𝑘=1

�̃�𝑖𝑘𝑡 q𝑘 + V𝑡 (𝑖)), (6)

where �̃�𝑖𝑡 represents the i-th element of r̃𝑢𝑡 , and
∑𝑚
𝑘=1 �̃�

𝑖𝑘
𝑡 q𝑘 +V𝑡 (𝑖)

denotes the vision-semantic representation of the i-th region, as
well �̃�𝑖𝑘𝑡 is obtained by performing softmax function over𝑤𝑖𝑘𝑡 by
row. By this means, the FAU provides a distilled vision-semantic
context for subsequent composing process.

Composed Semantic-Aware Unit (CAU). To exploit the high-
order vision-semantic compositionality, we forgo the traditional
pairwise relation-based methods [10, 34, 47]. In this part, we in-
troduce a composed semantic-aware unit, as shown in Figure 4.
We first produce different compounds expressed by diverse image
objects, where each compound is adaptively assigned a distinc-
tive score by the attention learning. Then, we perform compounds
aggregation to further refine the high-order composed semantic.

As the dilated convolution [51] can aggregate multi-scale con-
textual semantic by using different kernels, we design a dilated
convolution layer with K parallel kernels, as reported in Table 1.
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Table 1: Dilated convolution configurations, where 𝑧𝑘 ,  𝑑𝑘 , 
and 𝑝𝑘 denote kernel size, dilation rate, and padding size, re-
spectively.

kernel 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7
𝑧𝑘 1 3 3 3 5 5 5
𝑑𝑘 1 1 2 3 1 2 3
𝑝𝑘 0 1 2 3 4 5 6

Specifically, for each vision-semantic representation Ṽ𝑡 (𝑖) derived
from Eq. (6), we use K kernels to produce K compounds. We denote
the k-th kernel as 𝜙𝑘 (·), the output of k-th kernel is described as,

Ṽ𝑘𝑡 (𝑖) = 𝜙𝑘 (Ṽ𝑡 (𝑖)) . (7)

where Ṽ𝑘𝑡 (𝑖) is uniquely determined by the k-th kernel and the i-th
region, and we define ®V𝑡 (𝑖) =

[
Ṽ1
𝑡 (𝑖), ..., Ṽ

𝐾
𝑡 (𝑖)

]
∈ R𝑑×𝐾 . After-

wards, a fully-connected layer followed by a softmax function is
adopted to compute the importance score for each compound. In
formula, we summarize this process as follows,

𝑠𝑘𝑡 (𝑖) = W𝑠 Ṽ
𝑘
𝑡 (𝑖) + 𝑏𝑠 ,

𝑠𝑘𝑡 (𝑖) =
exp(𝛽 ·𝑠𝑘𝑡 (𝑖))∑𝐾
𝑖=1 exp(𝛽 ·𝑠𝑘𝑡 (𝑖))

,
(8)

where W𝑠 ∈ R𝑑×1 and 𝑏𝑠 ∈ R are learnable weights and bias,
respectively. We define S̃𝑡 (𝑖) =

[
𝑠1
𝑡 (𝑖), ..., 𝑠𝐾𝑡 (𝑖)

]
∈ R1×𝐾 , which is

denoted as the corresponding scores vector. 𝛽 is the temperature
parameter to increase the gap between the optimal compounds and
the suboptimal ones.

Thereafter, a linear combination of 𝐾 compounds is computed
by their corresponding scores as follows,

V
′
𝑡 (𝑖) = ®V𝑡 (𝑖) S̃𝑡 (𝑖)T . (9)

With Eq. (9), we could capture the most salient composed informa-
tion related to the i-th region, which is summarized by V

′
𝑡 (𝑖) ∈ R𝑑 .

To further refine the composed vision-semantic representations,
we conduct high-order aggregation to link up the similar com-
pounds. Specifically, we merge spatial and semantic representations
to build compounds interactions,

𝑎𝑖𝑘,𝑡 =
𝑎
𝑝

𝑖𝑘,𝑡
exp(𝑎𝑠

𝑖𝑘,𝑡
)∑𝑛

𝑘=1 𝑎
𝑝

𝑖𝑘,𝑡
exp(𝑎𝑠

𝑖𝑘,𝑡
)
, (10)

where 𝑎𝑠
𝑖𝑘,𝑡

∈ R and 𝑎𝑝
𝑖𝑘,𝑡

∈ R measures the vision-semantic corre-
lation and relative geometric correlation between the i-th and the
k-th compound, respectively, which are computed as,{

𝑎𝑠
𝑖𝑘,𝑡

= (W𝑠1V
′
𝑡 (𝑖))T (W𝑠2V

′
𝑡 (𝑘)),

𝑎
𝑝

𝑖𝑘,𝑡
= max(0,W𝑝 𝑓 (p𝑖 , p𝑘 )),

(11)

where W𝑠1 ∈ R𝑑×𝑑 and W𝑠2 ∈ R𝑑×𝑑 are projection matrixes,
𝑓 (·, ·) first computes a 4-dimensional relative geometry feature
(log( |𝑥𝑖−𝑥𝑘 |𝑤𝑖

), log( |𝑦𝑖−𝑦𝑘 |
ℎ𝑖

), log( 𝑤𝑘𝑤𝑖 ), log(ℎ𝑘
ℎ𝑖
)) based on their posi-

tion information, i.e., p𝑖 and p𝑘 , and embeds it into a𝑑𝑝 -dimensionality
feature by computing cosine and sine functions of different wave-
lengths [45], and then W𝑝 transforms the feature 𝑓 (p𝑖 , p𝑘 ) into
a geometry attention map, which is further trimmed at 0. Finally,

Attention 
Learning

High-order Aggregation
0.45

0.05
0.02

Compositionality Modeling

Composed  Semantic-Aware Unit

FC

Figure 4: Composed Semantic-Aware Unit.

similar compounds are aggregated and mutually strengthened by
𝑎𝑖𝑘,𝑡 ,

V
′′
𝑡 (𝑖) =

𝑛∑
𝑘=1

𝑎𝑖𝑘,𝑡 W𝑠3V
′
𝑡 (𝑘) (12)

where W𝑠3 ∈ R𝑑×𝑑 is a projection matrix, similar to W𝑠1 and W𝑠2,
V

′′
𝑡 (𝑖) ∈ R𝑑 represents the refined composed representation related

to i-th region.

3.2.2 LENA Network. The LENA network mimics a simple form
of iterative reasoning by leveraging the power of the LENA cell to
iteratively exploit the high-order semantic of visual scenes. As we
can see from Figure 2, the vision-semantic representation is refined
by the LENA cell through multiple steps. More specifically, for each
step 𝑡 ∈ [1,𝑇 ], where 𝑇 is the total number of steps, a LENA cell
processes and updates the representation as follows,

V𝑡 (𝑖) = LENACell(q𝑘 ,V𝑡−1 (𝑖)) . (13)

At each step 𝑡 (𝑡 > 1), the LENA cell reduces the redundant regions
(objects or compounds) generated by last cell, and further exploits
the high-order vision-semantic representations.

The residual nature of this module makes it possible to align
multiple cells without being affected by gradient vanishing. More-
over, each cell has independent parameters due to that the cell
in different depth tends to capture different levels of information,
which enables to reveal deeper vision-semantic representations.

3.3 Answer Reasoning
To generate the holistic representation for the whole visual scene,
we adopt the soft attention mechanism to refine V𝑇 (𝑖). For the
question, we use average pooling to aggregate the word features
into a sentence feature. We then adopt a simple additive fusion to
obtain the final vision-semantic representation. We summarize the
above process as follows,

y = 𝛿 (W𝑦 (
𝑛∑
𝑖=1

𝑎𝑖 · V𝑇 (𝑖) +
1
𝑚

𝑚∑
𝑘=1

q𝑘 )), (14)

where𝛿 (·) is a sigmoid activation function,𝑎𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑎V𝑇 (𝑖)),
as wellW𝑦 andW𝑎 are learnable parameters. Following [2], we use
the binary cross-entropy loss function to train an answer classifier.

4 EXPERIMENTS
In this section, we conducted experiments to evaluate the per-
formance of our proposed LENA model on two VQA benchmark
datasets, i.e., VQA v2 [12] and VQA-CP v2 [37].
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Table 2: Performance comparison on the val, test-dev, and test-std splits of the VQA v2 dataset. For val results (the left column),
all models are trained on the train split. For test results (the middle and the right column), all model are trained on the train
+ val splits. We directly quoted the results of these baselines from their original papers except the ones marked by “*”, which
are obtained by running their released code. The best performance is highlighted in bold.

Methods VQA v2 val (Acc. %) VQA v2 test-dev (Acc. %) VQA v2 test-std (Acc. %)

All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other

MLB [21] 62.91 - - - 66.27 83.58 44.92 56.34 66.62 - - -
MUTAN [5] 63.61 - - - 66.01 82.88 44.54 56.50 66.38 - - -
DCN [33] 63.83 - - - 66.83 84.48 41.66 57.44 66.66 84.61 41.27 56.83

DA-NTN [4] - - - - 67.56 84.29 47.14 57.92 67.94 - - -
BLOCK [6] - - - - 67.58 83.60 47.33 58.51 67.92 83.98 46.77 58.79
UpDn [2] 63.15 80.07 42.87 55.81 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26
BAN [20]∗ 65.18 - - - 68.16 - - - 68.38 - - -
CGN [34] - - - - 66.45 - - - 66.18 82.91 47.13 56.22

CoR-3 [47]∗ 64.92 - - - 68.19 84.96 47.11 58.64 68.59 85.16 47.19 59.07
ODA [48]∗ - - - - 68.17 84.66 48.04 58.68 - - - -
ReGAT [24] 65.30 - - - - - - - - - - -

CRA-Net [36] 65.84 83.63 46.85 57.26 68.61 84.87 49.46 59.08 68.92 85.21 48.43 59.42
MRA-Net [35] 66.08 - - - 69.02 85.58 48.92 59.46 69.46 85.83 49.22 59.86
SceneGCN [50] - - - - 66.81 82.72 46.85 57.77 67.14 83.16 46.61 57.89
TRN+UpDn [16] - - - - 67.00 83.83 45.61 57.44 67.21 - - -

VCTREE+HL [44] 65.10 82.61 45.10 57.10 68.19 84.28 47.78 59.11 68.49 84.55 47.36 59.34
Ours (LENA) 66.59 84.35 48.71 57.79 69.39 85.87 49.97 59.52 69.70 85.95 49.90 59.87

Table 3: Performance comparison on the test-dev and test-std
splits of the VQA v2 dataset. All models are trained on
the train + val splits with extra Visual Genome augmen-
tation [23]. The symbol “*” refers to models that are pre-
trained on the large corpus Conceptual Captions [40].

Methods test-dev (Acc. %) test-std (Acc. %)

All Y/N Num. Other All

MFH [54] 68.76 84.27 49.56 59.89 -
BAN [20] 69.66 85.46 50.66 60.66 -
Counter [55] 68.09 83.14 51.62 58.97 68.41
BAN+Counter [20] 70.04 85.42 54.04 60.52 70.35
MuRel [47] 68.03 84.77 49.84 57.85 68.41
Erase-Att [29] 70.07 85.87 50.28 61.10 70.36
MLIN [11] 70.18 85.96 52.93 60.40 70.28
DFAF [10] 70.22 86.09 53.32 60.49 70.34
MCAN [52] 70.63 86.82 53.26 60.72 70.63
Ours (LENA) 70.31 86.63 54.26 60.22 70.48

VL-BERT [43]∗ 70.50 - - - 70.83
ViLBERT [30]∗ 70.55 - - - 70.92
VisualBERT [25]∗ 70.80 - - - 71.00
Ours (LENA) 70.31 86.63 54.26 60.22 70.48

4.1 Datasets and Evaluation Metric
4.1.1 Datasets. VQAv2: It is the most commonly used VQA bench-
mark dataset. The images are from theMicrosoft COCO dataset [26],
and each question has answers from ten different annotators. The
answers are divided into three categories: Yes/No, Number, and

Other. Besides, the dataset is split into train, val, and test (or test-
std) splits, and 25% of the test-std set is reserved as the test-dev set.
The ground truth answers are only available for the first two splits.

VQA-CP v2: This dataset is curated from the VQA v2 dataset,
which is introduced to evaluate the question-oriented bias reduc-
tion capability in VQA models. Due to the significant difference of
distribution between the train set and the test set, the VQA-CP v2
dataset is much more challenging than the VQA v2.

4.1.2 Evaluation Metric. We adopted the standard VQA accuracy
metric for evaluation [3]. Given an image and a corresponding
question, for a predicted answer 𝑎, the accuracy is computed as,

𝐴𝑐𝑐𝑎 = min(1, #humans that provide a
3 ) . (15)

Note that each question is answered by ten participants, and this
metric takes the disagreement in human individuals into consider-
ation.

4.2 Implementation Details
The hyper-parameters of our model used in the experiments are
summarized as follows. For each image, we set a threshold for Faster
RCNN to obtain 𝑛 = 36 object features. All questions are padded
or truncated to the same length 𝑚 = 14. The size of the answer
vocabulary is set to M=3,129, as used in [2]. The dimensionality of
𝑑𝑣 , 𝑑𝑞 , 𝑑𝑒 , 𝑑𝑐 , 𝑑𝑝 , and 𝑑 are set to 2,048, 512, 300, 1600, 64, and 512,
respectively. The number of the LENA cell is 𝑇 ∈ {1, 2, 4, 6, 8, 10}
and we experimentally set 𝑇 to 8 in our best report. To reasonably
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control the redundancy removal, the decaying parameter 𝛾 is set to 
0.80 in our best record.

To train the LENA network, we use the Adam optimizer [22] 
with 𝛽1 = 0.9 and 𝛽2 = 0.98. The base learning rate is set to 
min(2.5𝑡𝑒−5, 1𝑒−4), where 𝑡 is the current epoch number starting 
from 1. After 10 epochs, the learning rate is decayed by 1/4 every 
two epochs to 2.5𝑡𝑒−5. The batch size is set to 64.

4.3 Performance Comparison
In this section, we compare the performance of the proposed method 
against state-of-the-art methods on two popular benchmark datasets, 
VQA v2 and VQA-CP v2. Table 2, Table 3, and Table 4 summarize the 
accuracy comparison results, where Y/N, Num., Other, and All rep-
resent the accuracy of the yes/no questions, the counting questions, 
other kinds of questions, and all the questions, respectively.

Table 2 shows the results trained on the train (the left column) 
and train+val (the middle and right column) splits of the VQA v2 
dataset. We can see that our LENA model achieves the best per-
formance, substantially surpassing all the baselines. Specifically, 
UpDn [2] adopts the soft attention mechanism to leverage the 
salient image regions for question answering, and BAN [20] em-
ploys the bilinear attention to further enhance the fine-grained 
visual representations, both of which ignore the vision-semantic 
redundancy problem. By effectively performing vision-semantic 
redundancy removal, our LENA model outperforms UpDn and 
BAN by 4.03% and 1.32% on the test-std set, respectively. In ad-
dition, CGN [34] and ODA [48] explore object-pair relations to 
enhance the feature learning, which cannot sufficiently exploit the 
complex semantic composed by diverse objects. Nevertheless, our 
LENA model outperforms CGN and ODA by 2.94% and 1.22% on 
the test-dev set respectively, which demonstrates the superiority of 
our model in vision-semantic compositionality modeling.

Table 3 shows the results trained on the train+val splits of the 
VQA v2 dataset with extra Visual Genome augmentation [23]. We 
can observe that our LENA model performs better than the module-
based model like MuRel [47], which iterates through multiple steps 
of a reasoning cell. This adequately shows the power of our LENA 
cell in high-order semantic modeling. Inspiringly, we are compa-
rable to several formidable pre-trained models in the VQA task, 
which are first trained on the large corpus [40] and then fine-tuned 
on the VQA v2 dataset.

To demonstrate the generalizability of our LENA model, we also 
conducted experiments on the VQA-CP v2 dataset [14, 15]. The cor-
responding results are reported in Table 4. Agrawal et al. [1] curated 
the GVQA model to reduce the influence of language bias, although 
our proposed method is not specialized to tackle this problem, it 
still has 1.09% advantage over the GVQA model. In addition, DC-
GCN [19] considers fine-grained pairwise interactions, where their 
dependency parsing mechanism can effectively reduce question-
based overfitting. We observe that our LENA model provides a 
substantial gain over this strong baseline by 0.79%. In summary, 
the results on the VQA-CP v2 dataset show that our well-devised 
LENA cell enables our model to effectively perform redundancy 
removal and enhance the vision-semantic composed representation, 
whereby reduces the language bias to some extent.

Table 4: Performance evaluated on the test split of the VQA-
CP v2 dataset. Models with “*” are designed for solving the
language bias problem. The best results are in bold.

Method VQA-CP v2 test (Acc. %)

All Y/N Num. Other

RAMAN [42] 39.21 - - -
BAN [20] 39.31 - - -

MuRel [47] 39.54 42.85 13.17 45.05
ReGAT-Sem [24] 39.54 - - -
ReGAT-Imp [24] 39.58 - - -
ReGAT-Spa [24] 40.30 - - -

ReGAT [24] 40.42 - - -
MRA-Net [35] 40.45 44.53 13.05 45.83
DC-GCN [19] 41.47 - - -

UpDn [2] 39.74 42.70 11.93 46.05
GVQA [1]∗ 31.30 57.99 13.68 22.14

UpDn+AdvReg. [37]∗ 41.17 65.49 15.48 35.48

Ours (LENA, T=4) 41.51 65.93 12.31 46.59
Ours (LENA, T=6) 42.26 67.74 14.71 46.78
Ours (LENA, T=8) 41.62 66.12 12.64 46.62

Table 5: Ablation studies of our proposed model on the val
split of the VQA v2 dataset. The results of the full model are
highlighted in bold.

Method VQA v2 val (Acc. %)

All Y/N Num. Other

Ours (LENA) 66.59 84.35 48.71 57.79

(Focal Attention Unit)
𝑤/𝑜 FAU 65.07↓1.52 82.57 45.01 56.97

𝑟 .𝑤. Soft Att. 66.01↓0.58 83.62 47.21 57.38
𝑟 .𝑤.Gating Att. 66.18↓0.41 83.92 47.83 57.43
𝑟 .𝑤. M-LSTM 65.68↓0.91 83.09 46.62 57.28

(Composed Semantic-Aware Unit)
𝑤/𝑜 CAU 65.88↓0.71 83.81 46.81 57.35
𝑟 .𝑤. GCN 65.45↓1.14 82.98 45.76 56.21

4.4 Ablation Study
In this section, we design some ablation experiments to verify
the effectiveness of FAU and CAU in our LENA model. For fair
comparison, all the evaluated models have the same experimental
settings.

Focal Attention Unit. To justify the effectiveness of FAU, we
experimented with three variants: 1) w/o FAU refers to the LENA
model without FAU; 2) r.w.Gating Att. replaces FAU with a Gating
Attention Unit [8], which can be described as the following form:
𝛽 ·V𝑡 (𝑖)+(1−𝛽) ·q𝑘 , where 𝛽 is a real-valued number parameterized
by V𝑡 (𝑖) and q𝑘 ; 3) r.w. M-LSTM replaces FAU with M-LSTM [8],
a multimodal gating fusion function that is similar to LSTM, which
is defined as g ⊙ V𝑡 (𝑖) + (1 − g) ⊙ (W

[
V𝑡 (𝑖);q𝑘

]
), where g is

the gating vector parameterized by V𝑡 (𝑖) and q𝑘 , and W is the
learnable parameter. The comparison results are summarized in
Table 5. We could see that the performance of w/o FAU drops 1.42%
compared with that of our full model. Meanwhile, our full model
with FAU achieves substantially better performance than other
two basic variants. These experiments verified the effectiveness
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Figure 5: Visualization of LENA-1, LENA-5, and LENA-8. The index within [0-35] shown on the horizontal axes of the attention
maps corresponds to each object in the image, and the index within [0-6] represents different composed mode determined by
corresponding convolutional kernels.

of FAU, and these superior performance can be attributed to the
effective pruning of the semantic redundancy achieved by the focal
mechanism.

Composed Semantic-Aware Unit. To explore how CAU af-
fects the results, we experimented with two variants: 1) w/o CAU
refers to the LENA model without CAU; 2) r.w GCN replaces CAU
with a Graph Convolutional Network [46] for pairwise relationmod-
eling. By jointly analyzing the results in Table 5, we can observe
that our LENA model displays consistent improvements over these
two variants, which manifests that exploiting diverse composed
semantic can provide more sophisticated evidence for question
answering.

4.5 Visualization
To intuitively assess which regions (objects or compounds) are more
faithful to model decisions, we utilized the visualization strategy
similar to [20]. As shown in the rightmost of Figure 5, we visualized
the learned attentions r𝑔𝑡 ∈ R𝑛 and S̃𝑡 ∈ R𝐾×𝑛 from three LENA
cells, i.e., LENA-1, LENA-5, and LENA-8. Here, LENA-𝑡 is the LENA
cell at time step 𝑡 , r𝑔𝑡 represents the importance of each region in
LENA-𝑡 , and S̃𝑡 represents the different composed modes associated
with regions. Particularly, in S̃𝑡 , each row denotes one composed
mode determined by the corresponding convolution kernel, and
each column corresponds to each region in the image. Given the

form of (𝑥,𝑦), 𝑥 represents the x-th composed mode, i.e., convo-
lution kernel 𝑘𝑥 , as shown in Table 1, and 𝑦 represents the y-th
region.

Taking LENA-8 as an example, the large values in S̃8 occur on
(3, 11), (4, 9), (4, 30), (6, 25), (3, 35), and (5, 35), which indicates that
the model tends to concern these composed results. Particularly,
different convolution kernels tend to capture different region sets.
For example, (3, 11) tends to capture the region sets consisting of
{8, 11, 14}, and (5, 25) tends to capture {21, 23, 25, 27, 29}. Thereafter,
we merge all the region sets into one set, from which we further
remove the redundant regions based on r𝑔8. Finally, we find out the
important regions and mark them with yellow boxes, as shown in
the leftmost of Figure 5.

4.6 Qualitative Results
We show the behavior of the focal attention unit and the composed
semantic-aware unit in Figure 6. In the first sample, our focal at-
tention unit first removes the redundant regions, such as “clock”
in the top left corner of the image. The boxes with yellow color
in the second image refer to the reserved regions. Following that,
our model leverages the composed semantic-aware unit to exploit
the abundant composed concepts. Here, we list three compounds
with different confidence scores generated in LENA-8. Taking the
compound with score 0.44 as an example, we observe that the local-
ized regions are “cook”, “people”, “pat”, and “hand”, their composed
representation provides a more comprehensive information for

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4534



Q: Are the people giving the elephant a bath? 

Ground-Truth: Yes    Prediction: Yes    
Compound  No.1   Score: 0.25  Compound  No.2   Score: 0.23  Compound  No.3  Score: 0.22  

Compound No.1   Score: 0.29  Compound No.2   Score: 0.27  Compound No.3   Score: 0.21  Q: What is the woman in the room doing?  

Ground-Truth: Talking         Prediction: Cleaning

Original Image Focal Attention Unit Composed  Semantic-Aware Unit

Compound  No.1  Score: 0.44  Compound  No.2   Score: 0.31  Compound  No.3   Score: 0.21  
Q: What does the black machine next to the man produce? 

Ground-Truth: Cooking   Prediction: Cooking   

Figure 6: Qualitative evaluation of our LENA model.

answering “cooking”. Similarly, in the second sample, our LENA
model first removes some irrelevant background regions. Then, the
model captures the composed semantic, i.e., “people” + “ivory and
water” + “hands and arms”, which plays a vital role for understand-
ing the visual scene about bath. In the last sample, our LENA model
predicts the wrong answer due to lacking of accurate detection
on “woman” outside the window, which impedes the composing
process between two women.

4.7 Parameter Sensitivity
We carried out experiments to explore how the number of LENA
cells 𝑇 affects the model performance. Performance is reported on
the val split of the VQA v2 dataset. In Figure 7, we train the six
different LENA networks on the VQA v2 train split, each with a
different number of LENA cells. Networks with six and eight LENA
cells provide a gain of 1.07% and 1.37% in the overall accuracy
over the network with one LENA cell, respectively. It indicates
that understanding complex visual scene requires more incisive
composed vision-semantic modeling. Moreover, with increasing
𝑇 , the performance of our LENA network steadily improves and
finally saturates at 𝑇 = 8. The saturation can be explained by the
unstable gradients during training when 𝑇 > 8, which makes the
optimization difficult.

5 CONCLUSION
In this paper, we present a focal and composed vision-semantic
modeling network for VQA. It leverages a series of LENA cells to
progressively perform vision-semantic redundancy removal and
compositionality modeling for better visual reasoning. We exhib-
ited various ablation studies, clearly demonstrating the gain of our
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Figure 7: Performance of our LENA network with different
number of LENA cells 𝑇 on four types of questions.

focal mechanism to remove vision-semantic redundancy, the effec-
tiveness of compositionality modeling, and the multi-step iterations
in the whole process. Our final LENA network achieve very com-
petitive performance with state-of-the-art methods on two popular
used datasets.
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